
1

http://cmer.uoguelph.ca

Mobile Game Development for BlackBerry PlayBook with Adobe AIR

Lab #5: Game Engine

Introduction

The objective of this lab is to get our spaceship game engine up and running. We’ll learn

about the basics of game logic, while building a game of our own.

Where we left off
Continuing where Lab 4 left off, you should have your game set up, with an

accelerometer controlled ship on stage. I let you control how the ship will be affected by

the accelerometer, by letting you write the code. This is because The game is built by

you, not me. So it should be a reflection of how you think the game should react when

things happen. The ship is controlled, and moved, the why you think it should be – and

this is going to be a directly related to peoples opinions of your game. The ship is going

to be the first thing the player interacts with, and if they don’t like the way it reacts, it’ll

ruin their entire experience.

With that said, you may want to take some time to go back, modify your code, and get

the ship controller the way you want it.

Accelerometer vs. Button Control

This is a highly debated topic in mobile development. I won’t get too much into it, but

this is crucial when it comes to designing games. I chose accelerometer, because it is

more intuitive to pick up and use, there is less clutter on the screen, makes it more

challenging to control, and finally – makes the user feel like they are actually steering the

ship rather than playing a game. (Ever see your parents play a video game? They don’t

just push the buttons; they turn the controller, as if they were driving a car.) But like I

said before, if you don’t like my decision, feel free to change it to button controls. This is

your game.

Asteroids

Now that you have a controllable ship, you’ll need to set up some enemies. Start by

creating a new class called AsteriodClass.as. Copy the skeleton from Asteroid.txt. Read

the comments for explanations, and fill in the required code where it is needed.

Spawning Asteroids
In your init function (gameboard.as), you’ll want to add an event listener (on frame).

Event listeners are set up in ActionScript like so:

object.AddEventListener(EventType.Event, functionName);

So, if we want a function named newframe, to fire every frame change, we’ll add our

event listener like so:
this.addEventListener(Event.ENTER_FRAME, newframe);

Now that our initializer function adds an event listener, we’ll need to create the function

it fires, but first we’ll need some class variables. Create a private int called onscreen, and

2

http://cmer.uoguelph.ca

initialize it to 0. As well as a public static var as a new array, called rocks.

Create a private function called newframe. Ensure it accepts an event (event:Event), as

an input parameter, or it will not run. Inside this function, put the following:
if (onscreen < 6)

 {

 var temp:AsteriodClass = new AsteriodClass(stageR,

ourShip, this);

 temp.addEventListener(Event.REMOVED_FROM_STAGE,

removeEnemy, false, 0, true);

 rocks.push(temp);

 this.addChild(temp);

 onscreen++;

 }

This will check if there are 5 asteroids on screen every frame. If there are less, then it will

add one. Notice we added an event listener to the asteroid. If the asteroid is ever removed

from the display list (by calling asteroid.removeself();), then this event will fire. Build a

private function called RemoveEnemy, don’t forget to include an event as an input

parameter, that will be called when this event fires. Add the following code to it:

rocks.splice(rocks.indexOf(event.currentTarget), 1);

 onscreen--;

This code will remove the reference to the asteroid from our Array, and then decrease

our onscreen counter so another asteroid can be added to the stage next frame.

Figure 1

Run your game, and you should see something similar to Figure 1. When an asteroid hits

you, it should disappear, DAMAGED should appear onscreen, the asteroid should

disappear, and another spawn at the top. When an asteroid runs off screen, another should

spawn at the top.

3

http://cmer.uoguelph.ca

Lasers

Now you have the structure of the two main classes in your game, the Ship, and the

Asteroid. You also have basic interaction (hittest) between the asteroid and the ship, but

we’ll need to add an extended interaction between the ship and the asteroid – a laser.

Create a new class called Laser.as. Copy the code from laser.txt, and fill in the

removeSelf() code.

FIRE THE LASER!!!!111!!!1!

Now that we have a laser, we need to implement a way to actually fire it. Throughout this

lab, you may have wondered why we had a blank space at the bottom off the screen. This

empty space is going to be for our attack button.

In gameboard.as, declare a new private class variable called button, and give it the type

Sprite.

Add the following code to your init function.
//Create a new instance of a Sprite to act as the button graphic.

 button = new Sprite();

 button.x = 0;

 button.y = 875;

 //Set the color of the button graphic

 button.graphics.beginFill(0xFFFFFF);

 //Set the X,Y, Width, and Height of the button graphic

 button.graphics.drawRect(0, 0, stageR.stageWidth, 250);

 //Apply the fill

 button.graphics.endFill();

 button.addEventListener(MouseEvent.MOUSE_DOWN,

ourShip.fireBullet);

 this.addChild(button);

Once again, notice the event listener. This time, it calls a function inside the ship class.

So open up Ship.as, and create a new public function called fireBullet. Once again, do not

forget to include the event as an input parameter. This type the event type is a

MouseEvent. Put the following code inside the function:
stageRef.addChild(new Laser(stageRef, x, y));

Running your game should look like Figure 2.

4

http://cmer.uoguelph.ca

Figure 2

Pushing the game should fire a bullet. When a bullet hits an asteroid, it should disappear

and another should respawn.

And there you have it. Your first, very basic, top-down space-shooter game engine.

Polishing your game, testing yourself, and expanding your knowledge

Now that you have the basics of your game engine designed, consider doing the

following to polish your game, test yourself, and expand your knowledge.

1. Change the fire button graphic, it something both intuitive, and sleek in

appearance

2. Research methods to make your hitboxes more accurate. Research multiple

hitboxes, radial hitboxes, and pixel masks.

3. Add sounds. (This should be very easy, import, instantiate, object.play)

4. Add scores/health that will cause “Winner” or “Gameover”.

5. Add explosions. (Change the display list when an object is hit, remove explosion

after a short timer has expired)

