

1

http://cmer.uoguelph.ca

Developing Apps for the BlackBerry PlayBook with Adobe AIR

Lab # 3

Fundamentals of Intuitive GUI Design using Flash Builder

Introduction

The objective of this lab is to introduce the basic fundamentals of GUI design. This will

be done, by developing an application for the BlackBerry Playbook using the Flex 4

platform (Adobe Air). In this lab, we will build a functional BMI calculator, with a

polished, intuative, and interactive graphical user interface (GUI).

A small self-test is included at the end of this lab to test your uderstanding of it’s

contents.

Software Requirements

-Flash Builder 4.6 (http://www.adobe.com/products/flash-builder.html)

-Adobe Flex SDK (Included with Flash Builder)

-Playbook SDK for Adobe Air 2.0

(https://bdsc.webapps.blackberry.com/air/download/sdk/)

 -Playbook SDK must be integrated into Flash Builder.

-Playbook Simulation Enviroment

Skill Requirements
-This lab assumes basic knowledge of AS3

-This lab assumes basic understanding of the Flash Builder IDE

-This lab assumes you have completed parts 1 and 2 of the gravityball lab.

Set-Up

Included in this lab’s folder, is a file called “CalcBMI.fxp”. Open this file, by starting up

Flash Builder, and selecting File > Import Flash Builder Project. Browse for

CalcBMI.fxp and import it.

This project is a Flex Mobile Project, targeted for the Playbook 2.0. It is a View-Based

Application template, and includes images that I’ve created for use in this lab, as well as

two ActionScript classes that will be used to skin components in our App.

The View-Based Application works slightly different than our previous gravityball app.

It creates a display list based on a display array. The items of this array are screens, and

the last item in the array is the screen visible. Popping off the last item in the array, will

make the second last item in the array the new last item, and therefore it would be

displayed. Pushing (more on this later), adds a screen to the array (at the end), and is then

the new screen displayed to the user.

This project has a main file called CalcBMI.mxml, in the default package. This is the file

that launches when the app starts. It sets up the previously mentioned display list, refered

https://bdsc.webapps.blackberry.com/air/download/sdk/

2

http://cmer.uoguelph.ca

to as the navigator. Refering to the code, you’ll notice the firstview is

views.CalcBMIHomeView. This means, that once the display list array is created,

CalcBMIHomeView is added to the array, and since it is the last element (currently, it’s

the only element so it must be last) it is the actual first screen the user will see. So we

will put our code in this file (views.CalcBMIHomeView).

Backgrounds
Everyone likes backgrounds, they came about when the first new generation GUI’s were

being invented (late 70’s early 80’s) and have been around ever

since. They are effective at making things look polished, and

we definitely want that polished look for our app.

I’ve included a background image in the images package of our

project file.

Figure 1: Background Image

We will need to create a view/screen skin, that includes our background image, and then

apply that skin to our view. So, let’s start this lab.

Right click the skins package, and select New > MXML Skin.

Name it BackgroundSkin.

Use the host component spark.components.Application.

Create as a copy of spark.skins.spark.ApplicationSkin.

Remove all Actionscript styling. (We’ll be using XML to code this skin. It’s much easier

to read and edit.)

This is an exact copy of the default skin. It allows you to see what properties can be

modified in the view skin. Read through this file, to get a basic understanding of what

properties can be edited in the view skin.

Since we already load the default skin with the [Host Component], there is no need to

load it all. So, once you’ve read through the file, delete its entire contents, and replace it

with the code found in backgroundSkin.txt (included in this lab’s folder). You’ll notice

that with this code, we overwrite the fill property with a bitmapimage function, and load

3

http://cmer.uoguelph.ca

our image into it. We then create a group, (content group), on top of this image. We will

place our views content into this group, so it is ontop of the image. (Not behind it, where

it can’t be seen.) Save your skin.

Now, to apply your skin to our view, open up views.CalcBMIHomeView.

Find where your ViewNavigator is defined. (This call defines the view Array for this

view. The original view array is 2 dimensional) It should look like this:
<s:ViewNavigatorApplication xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark" firstView="views.CalcBMIHomeView"

applicationDPI="160">

Add the property skinClass, and give it the value “skins.backgroundSkin”. The modified

code should look like this:
<s:ViewNavigatorApplication xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark" firstView="views.CalcBMIHomeView"

applicationDPI="160" skinClass="skins.BackgroundSkin">

Run it. If all went well, it should look something like Figure 2.

Figure 2: Background Applied

Calculator
Now that you have the base of your application set up, we need to create some functions

that will handle the calculations for us. Create a new package, inside your src folder,

called functions. Then, inside your functions package, create a new actionscript class

called calculate. (Note: By convention, AS classes normally start with an uppercase.

However, since I will be treating this class as a function, and not a graphical asset or

object, I perfer to keep it lowercase so I can differeniate between what will act as tools,

4

http://cmer.uoguelph.ca

and what will act as manipulatable objects). Replace the entire code in this class, with

that found in calculate.txt. Refer to the comments for explanations of the code.

Final Functionality and GUI Set Up

Now, return to views.CalcBMIHomeView, and paste the code found in insideviewtags.txt,

inside the <s:View> tags. The code inside <fx:script> is ActionScript, and the rest is

XML. XML allows use to make use of Flex’s predefined components very quickly, and

easily, which is why it is the perfered over ActionScript when assembling GUI’s. To

demonstrate this, I’ve presented to different animation techniques in the code. The move

animation, is implemented with ActionScript, whereas the Fade animation, is

implemented with XML. Take a look at both, to familarize yourself with the two.

ActionScript allows for more customization, where XML allows you to teak predefined

properties. Also notice that I’ve applied custom skins to the toggle switches, that allow

me to change the on/off labels to in/cm and lbs/kg.

Refer to the comments in the code for further explanations about the code.

Why Animations?

Animations are important in GUI’s. Having your graphical assets appear slowly, allow

the user to notice where things are occuring, and gives them time to divert their attention.

They are key to any dynamic GUI, and can be implementing in many ways, a few of

which were introduced in this lab.

Test Yourself
1. Slow down the fade in, and movement animation by a full second

2. Add a new button to the GUI, using XML

3. Create another view

4. Add functionality to the created button, by popping the current view, and pushing

your newly created view

