

http://cmer.uoguelph.ca

Developing Native Apps for BlackBerry 10 with Cascades

Lab # 2: Adding Game Logic and Improving the Game

The objective of this lab is to review some of the concepts of Qt (pronounced “cute”) and

Cascades for creating Native applications for BlackBerry 10 devices. In this lab, we’ll be adding

game logic as well as adding to the user interface. The instructions are based on a Windows

environment.

Note: In Windows, be sure to run each of the following installers “as administrator”.

Before attempting this lab, please be sure to get a set of BB10 Device Code signing keys (NFC

key optional) from https://www.blackberry.com/SignedKeys/nfc-form.html (be sure to select

the box for BB10, BB7 and below optional), and download the BlackBerry 10 Native SDK

with Cascades and the BlackBerry 10 Dev Alpha Simulator, both of which are available at
https://developer.blackberry.com/cascades/download. To set up the environment, follow the steps

from https://developer.blackberry.com/cascades/documentation/getting_started/setting_up.html.

Note that you should have 2GB of free space on your computer, and that your computer meets the

minimum system requirements listed (click “Requirements” under the download button on the

Downloads page to view them). Next, download and install VMware Player (from

http://www.vmware.com/products/player/ Note that you’ll need to create an account with

VMware if you do not already have one). To start the simulator, simply open VMware Player,

click on “Open a Virtual Machine” and open the .vmx file from wherever you installed the BB10

simulator.

This lab assumes that you have a basic knowledge of C++, an understanding of Object Oriented

programming, and assumes that you’ve completed the first lab so you should have a basic

knowledge of Cascades, the BlackBerry 10 Native SDK, and Qt.

Exercise 2: Add game logic, improve UI

 Run the QNX Momentics IDE (it will likely be named “BlackBerry Native SDK” in the

Start menu, or on the desktop, if you chose to create a shortcut during installation).

 If your project from Lab 1 isn’t listed in the Project Explorer pane of the IDE, click

“File” > “Open File…” and then open the .pro file for the code you completed in Lab 1.

 In the Project Explorer pane on the left, expand the project folder, expand the “src”

folder, and then open up the “app.cpp” source file.

 Ideally we want to end the game if there is a win, loss or tie. We also want to inform the

player if they won, lost, or tied.

 First lets add an area to display text to the player

o Go to the App constructor (App()).

o Find the line where we add the contentContainer to the appContainer (i.e. the

line appContainer.add(contentContainer)). We’re going to want to add a label

to contentContainer before we add it to the appContainer.

 There is already a Label pointer variable in “app.hpp” called

gameStatusLabel that we’ll use.

o Add the line: gameStatusLabel = new Label();

o We want the label to be center-aligned horizontally inside of the

contentContainer (which has a StackLayout). Look at the initialization of

titleLabel in the App constructor to see how this is done.

https://www.blackberry.com/SignedKeys/nfc-form.html
https://developer.blackberry.com/cascades/download
https://developer.blackberry.com/cascades/documentation/getting_started/setting_up.html
http://www.vmware.com/products/player/

http://cmer.uoguelph.ca

o Add the gameStatusLabel to the contentContainer.

o In newGame() call gameStatusLabel.setText(“”) after calling clearBoard().

o In the App destructor, add: “delete gameStatusLabel;”

 Now we can add checking for win, loss and tie conditions.

o Create a new function called checkWin(). It doesn’t take any parameters, but it

returns a Boolean. If the player won it returns true, it returns false otherwise.

Copy the code below into the function:

o Create a new function called checkTie(). It doesn’t take any parameters, but it

returns a Boolean representing if the game ended in a tie (true) or not (false).

Copy the code below into the function:

o Create a new function called checkLose(). It doesn’t take any parameters, but it

returns a Boolean representing if the computer won (true) or not (false). Copy the

code below into the function:

o Find the spotSelect() function. In the last lab we added a line before the

computer’s turn which checked if there were spots left in remainingSpots to

prevent the computer from going when there were no spots left. We can now

replace this line with checking if the player won, or if there was a tie.

if ((spots[0]=='O')&&(spots[1]=='O')&&(spots[2]=='O')) return true;
if ((spots[0]=='O')&&(spots[3]=='O')&&(spots[6]=='O')) return true;
if ((spots[0]=='O')&&(spots[4]=='O')&&(spots[8]=='O')) return true;
if ((spots[1]=='O')&&(spots[4]=='O')&&(spots[7]=='O')) return true;
if ((spots[3]=='O')&&(spots[4]=='O')&&(spots[5]=='O')) return true;
if ((spots[6]=='O')&&(spots[7]=='O')&&(spots[8]=='O')) return true;
if ((spots[2]=='O')&&(spots[5]=='O')&&(spots[8]=='O')) return true;
if ((spots[6]=='O')&&(spots[4]=='O')&&(spots[2]=='O')) return true;

return false;

if ((spots[0] != '-')&&(spots[1] != '-')&&(spots[2] != '-')
 &&(spots[3] != '-')&&(spots[4] != '-')&&(spots[5] != '-')
 &&(spots[6] != '-')&&(spots[7] != '-')&&(spots[8] != '-')){
 return true;
}
return false;

if ((spots[0]=='X')&&(spots[1]=='X')&&(spots[2]=='X')) return true;
if ((spots[0]=='X')&&(spots[3]=='X')&&(spots[6]=='X')) return true;
if ((spots[0]=='X')&&(spots[4]=='X')&&(spots[8]=='X')) return true;
if ((spots[1]=='X')&&(spots[4]=='X')&&(spots[7]=='X')) return true;
if ((spots[3]=='X')&&(spots[4]=='X')&&(spots[5]=='X')) return true;
if ((spots[6]=='X')&&(spots[7]=='X')&&(spots[8]=='X')) return true;
if ((spots[2]=='X')&&(spots[5]=='X')&&(spots[8]=='X')) return true;
if ((spots[6]=='X')&&(spots[4]=='X')&&(spots[2]=='X')) return true;

return false;

http://cmer.uoguelph.ca

 If the player won, set the gameStatusLabel’s text to a win message, and

return.

 If there was a tie, set the gameStatusLabel’s text to a tie message, and

return.

o After the code for the computer’s turn, check if the computer won.

 If the computer won, set the gameStatusLabel’s text to a lose message,

and return.

 Test your app to make sure the game stops when it’s supposed to and displays the

corresponding message.

 You may notice that if you win before all the spots are taken, you are still able to put ‘X’s

in the remaining spots even though the game is over. To prevent this you can use the

playerTurn Boolean. This will also somewhat prevent the player from pressing buttons

before the screen is ready and also from pressing buttons before the computer’s turn

ended.

o At the very beginning of spotSelect() return if playerTurn is false

o After checking that the spot the player clicked isn’t already taken, set playerTurn

to false

o Set it back to true at the end of the computer’s turn

o Set it to false in initialize()

o Set it to true in newGame()

 Next we’ll add a button to start a new game, so that the player doesn’t have to re-open the

App every time the game ends.

o Back in the App constructor, add a Button under where you added the

gameStatusLabel.

 There is already a Button pointer variable in “app.hpp” called

newGameBtn that we’ll use.

o Add the line: newGameBtn = new Button();

o Set the text of the button (newGameBtn.setText(“New Game”)).

o Horizontally center the button, like you did for the gameStatusLabel.

o If you want the button to only be clickable when the game ends, set its enabled

property to false here (setEnabled(false)). Re-enable it on a win, loss, or tie.

o If you want the button to only be visible when the game ends, set its visible

property to false here (setVisible(false)). Make it visible again on a win, loss, or

tie.

o Connect the newGameBtn’s clicked() SIGNAL to App’s newGame() SLOT.

Refer to the game board’s buttons if you’re unsure of how to do this.

o Add the newGameBtn button to the contentContainer.

o In the App destructor, add: “delete newGameBtn;”

 Run your app again. It should look something like Figure 1:

http://cmer.uoguelph.ca

Figure 1

 Now we’ll make the App more our own by replacing the default icon that shows up on

the user’s Apps screen.

o Copy the “icon.png” file from the “lab2_images” folder from the start-up files

directly into the project folder, overwriting BlackBerry’s default “icon.png”.

o Open the “bar-descriptor.xml” file, and click on the Application tab. In the Icon

field, you should see a tic tac toe image.

 Again we’ll make the App more our own by replacing the default BlackBerry splash

screen that shows up when the app starts.

o Copy the “splashscreen-Portrait.png” file from the “lab2_images” folder from the

start-up files directly into the project folder.

o Open the “bar-descriptor.xml” file, and click the Application tab. There is a

“Splash Screens” section. Beside the Portrait field, click the Browse button. Click

the “Workspace…” button, then find and select the “splashscreen-Portrait.png”

file and click OK.

o Save the “bar-descriptor.xml” file

 We’re not currently supporting landscape orientation, so we can skip setting the

landscape splash screen.

 Run the app again. You should see it has a tic tac toe icon now, and when the App loads

you should see something like Figure 2:

Figure 2

http://cmer.uoguelph.ca

 Right now our “computer” player isn’t very good at playing. Let’s improve on this by

adding some logic to make it try to win if it has two ‘O’s lined up, and try to block

you from winning if you have two ‘X’s lined up.

o Create a computerGoForTheWin() function that takes no arguments and

returns an integer. Copy the following code into it:

o This code checks for any win condition. If it finds one, it returns the spot the

computer needs to choose in order to win. If none of the “win” conditions

match then it returns negative one.

o Create a computerGoForTheBlock() function that takes in no parameters and

returns an integer. Copy the following code into it:

if ((spots[0]=='O')&&(spots[1]=='O')&&(spots[2]=='-')) return 2;
if ((spots[0]=='O')&&(spots[1]=='-')&&(spots[2]=='O')) return 1;
if ((spots[0]=='-')&&(spots[1]=='O')&&(spots[2]=='O')) return 0;
if ((spots[0]=='O')&&(spots[3]=='O')&&(spots[6]=='-')) return 6;
if ((spots[0]=='O')&&(spots[3]=='-')&&(spots[6]=='O')) return 3;
if ((spots[0]=='-')&&(spots[3]=='O')&&(spots[6]=='O')) return 0;
if ((spots[0]=='O')&&(spots[4]=='O')&&(spots[8]=='-')) return 8;
if ((spots[0]=='O')&&(spots[4]=='-')&&(spots[8]=='O')) return 4;
if ((spots[0]=='-')&&(spots[4]=='O')&&(spots[8]=='O')) return 0;
if ((spots[1]=='O')&&(spots[4]=='O')&&(spots[7]=='-')) return 7;
if ((spots[1]=='O')&&(spots[4]=='-')&&(spots[7]=='O')) return 3;
if ((spots[1]=='-')&&(spots[4]=='O')&&(spots[7]=='O')) return 1;
if ((spots[3]=='O')&&(spots[4]=='O')&&(spots[5]=='-')) return 5;
if ((spots[3]=='O')&&(spots[4]=='-')&&(spots[5]=='O')) return 4;
if ((spots[3]=='-')&&(spots[4]=='O')&&(spots[5]=='O')) return 3;
if ((spots[6]=='O')&&(spots[7]=='O')&&(spots[8]=='-')) return 8;
if ((spots[6]=='O')&&(spots[7]=='-')&&(spots[8]=='O')) return 7;
if ((spots[6]=='-')&&(spots[7]=='O')&&(spots[8]=='O')) return 6;
if ((spots[2]=='O')&&(spots[5]=='O')&&(spots[8]=='-')) return 8;
if ((spots[2]=='O')&&(spots[5]=='-')&&(spots[8]=='O')) return 5;
if ((spots[2]=='-')&&(spots[5]=='O')&&(spots[8]=='O')) return 2;
if ((spots[6]=='O')&&(spots[4]=='O')&&(spots[2]=='-')) return 2;
if ((spots[6]=='O')&&(spots[4]=='-')&&(spots[2]=='O')) return 4;
if ((spots[6]=='-')&&(spots[4]=='O')&&(spots[2]=='O')) return 6;

return -1;

http://cmer.uoguelph.ca

o Go back to the spotSelect() function. We’re going to now replace the line

were we called computerGoForRandomSpot() with the new logic.

 Replace computerGoForRandomSpot() with

computerGoForTheWin()

 If computerChoice is negative one, then set it to the returned value

from computerGoForTheBlock().

 If computerChoice is still negative one, then set it to the returned

value from computerGoForRandomSpot().

 Loading the App onto a device

o Make sure the device is on, and has development mode on (from the settings

[swipe down the top bezel, or click the gear icon] and then selecting

Security, and Development Mode), and that “Connect to Windows” or

“Automatically Detect” is on if connecting to a Windows machine (settings >

Storage & Sharing).

o Connect the device and wait for it to be recognized on the computer.

o The computer and device will prompt you for the password. Enter it into

both.

o If you have not set up the device when you were setting up your

environment, then you’ll have to follow additional steps to set the IDE to

recognize the device:

 Click Window > Preferences

 In the left pane, click on BlackBerry

 In the right pane, click the link to the BlackBerry Deployment

Setup Window
 Click Next

if ((spots[0]=='X')&&(spots[1]=='X')&&(spots[2]=='-')) return 2;
if ((spots[0]=='X')&&(spots[1]=='-')&&(spots[2]=='X')) return 1;
if ((spots[0]=='-')&&(spots[1]=='X')&&(spots[2]=='X')) return 0;
if ((spots[0]=='X')&&(spots[3]=='X')&&(spots[6]=='-')) return 6;
if ((spots[0]=='X')&&(spots[3]=='-')&&(spots[6]=='X')) return 3;
if ((spots[0]=='-')&&(spots[3]=='X')&&(spots[6]=='X')) return 0;
if ((spots[0]=='X')&&(spots[4]=='X')&&(spots[8]=='-')) return 8;
if ((spots[0]=='X')&&(spots[4]=='-')&&(spots[8]=='X')) return 4;
if ((spots[0]=='-')&&(spots[4]=='X')&&(spots[8]=='X')) return 0;
if ((spots[1]=='X')&&(spots[4]=='X')&&(spots[7]=='-')) return 7;
if ((spots[1]=='X')&&(spots[4]=='-')&&(spots[7]=='X')) return 4;
if ((spots[1]=='-')&&(spots[4]=='X')&&(spots[7]=='X')) return 1;
if ((spots[3]=='X')&&(spots[4]=='X')&&(spots[5]=='-')) return 5;
if ((spots[3]=='X')&&(spots[4]=='-')&&(spots[5]=='X')) return 4;
if ((spots[3]=='-')&&(spots[4]=='X')&&(spots[5]=='X')) return 3;
if ((spots[6]=='X')&&(spots[7]=='X')&&(spots[8]=='-')) return 8;
if ((spots[6]=='X')&&(spots[7]=='-')&&(spots[8]=='X')) return 7;
if ((spots[6]=='-')&&(spots[7]=='X')&&(spots[8]=='X')) return 6;
if ((spots[2]=='X')&&(spots[5]=='X')&&(spots[8]=='-')) return 8;
if ((spots[2]=='X')&&(spots[5]=='-')&&(spots[8]=='X')) return 5;
if ((spots[2]=='-')&&(spots[5]=='X')&&(spots[8]=='X')) return 2;
if ((spots[6]=='X')&&(spots[4]=='X')&&(spots[2]=='-')) return 2;
if ((spots[6]=='X')&&(spots[4]=='-')&&(spots[2]=='X')) return 4;
if ((spots[6]=='-')&&(spots[4]=='X')&&(spots[2]=='X')) return 6;

return -1;

http://cmer.uoguelph.ca

 Check the box labeled “Device connected using USB”

 Fill in the device’s IP address (this can be found on the Device by

clicking the Developer icon in the top bar, or by going to the settings

[swipe down the top bezel, or click the gear icon] and then selecting

Security, and Development Mode), fill in the device password and

then click Next.

 The IDE will take a moment to connect to the device

 Add the location of your registered BB10 signing keys in the field

that asks for them and click Next

 Generate a debug key, or (if you already have one created) add the

location of an existing debug key to the field that asks.

 You may need to generate a debug token on the device if it does not

already have one.

 Click Next then click Finish

o Click the down arrow beside the Build button, and change the build setting

from “Simulator-Debug” to “Device-Debug”. Click build.

o Click on the down arrow beside the Run button, and click on “Run

Configurations…” and add a new Run Configuration if you haven’t already

made one for the Device. Enter your project name, or “Browse…” for it. Set

the Build Configuration to match what you built the project with (Device-

Debug). Select the device you added for the Target (or, if it does not show

up, you might have to “Add New Target…”), and click “Apply”. You can

choose to run it here by clicking “Run”, or close the Run Configurations

window and run it from the main screen. To do so, hover over the Run

button. If it says “Run <APP CONFIGURATION>” (where <APP

CONFIGURATION> is the App Configuration you just made in this step)

then you can click the button. If not, click the down arrow and select your

new App Configuration from the list.

o You should see your App working on the device as it did in the simulator.

 If you get an error about the Debug Key being invalid or in the

future, make sure that the date and time on the device is set passed

the date and time that you created the debug token.

o One final note: Since you cannot currently sign BB10 apps in Release mode

the App will stop working on the Device when your debug token on the

device expires, or if it is removed. To get it working again you just need to

right-click on the device in the Project Explorer and click Properties then

click Blackberry Target in the left pane, and click the Debug Token

Details… button in the right pane, click the debug token in the list, and click

the Renew button.

