

http://cmer.uoguelph.ca

Developing Native Apps for BlackBerry 10 with Cascades

Lab # 1: Getting Started with Cascades, Qt, and the Native SDK

The objective of this lab is to review some of the concepts of Qt (pronounced “cute”) and

Cascades for creating Native applications for BlackBerry 10 devices. In this lab, we’ll be dealing

with the interface of the application. The instructions are based on a Windows environment.

Note: In Windows, be sure to run each of the following installers “as administrator”.

Before attempting this lab, please be sure to get a set of BB10 Device Code signing keys (NFC

key optional) from https://www.blackberry.com/SignedKeys/nfc-form.html (be sure to select

the box for BB10, BB7 and below optional), and download the BlackBerry 10 Native SDK

with Cascades and the BlackBerry 10 Dev Alpha Simulator, both of which are available at
https://developer.blackberry.com/cascades/download. To set up the environment, follow the steps

from https://developer.blackberry.com/cascades/documentation/getting_started/setting_up.html.

Note that you should have 2GB of free space on your computer, and that your computer meets the

minimum system requirements listed (click “Requirements” under the download button on the

Downloads page to view them). Next, download and install VMware Player (from

http://www.vmware.com/products/player/ Note that you’ll need to create an account with

VMware if you do not already have one). To start the simulator, simply open VMware Player,

click on “Open a Virtual Machine” and open the .vmx file from wherever you installed the BB10

simulator.

This lab assumes that you have some knowledge of Java (only for the use of comparing it to the

Qt framework, thus this is not required), a basic knowledge of C++, an understanding of Object

Oriented programming, and assumes you have little to no knowledge of Cascades, the BlackBerry

10 Native SDK, or Qt.

Exercise 1: Examine the Project, Deal with clicks

 Extract the contents of Lab1-Startup.rar to a folder of your choice.

 Run the QNX Momentics IDE (it will likely be named “BlackBerry Native SDK” in the

Start menu, or on the desktop, if you chose to create a shortcut during installation).

 In the IDE, click “File” > “Open File…” and then open the .pro file.

 In the Project Explorer pane on the left, expand the project folder, and then expand the

“src” folder.

 Open up the “app.hpp” C++ header file, and take a quick glance at it. You will notice that

it has a lot of things declared already. This is so you won’t have to go back and forth

between the “app.hpp” and “app.cpp” files as you progress through the lab.

o You’ll notice a lot of #include statements. Those starting with Q (ex. QList,

QDebug, etc.) are part of the Qt framework

 <QtCore/QObject> - Like Java’s Object class, QObject is the base class

of all Qt objects.

 <QtCore/QMetaType> - This is a special Qt object that holds meta-data

for custom objects, this isn’t too important to know right now, but it

allows Qt to understand your custom objects in order to pass them

around properly.

 <QList> - Qt’s equivalent of Java’s ArrayList. A dynamically-sized list

of objects or even primitive types like int or char.

https://www.blackberry.com/SignedKeys/nfc-form.html
https://developer.blackberry.com/cascades/download
https://developer.blackberry.com/cascades/documentation/getting_started/setting_up.html
http://www.vmware.com/products/player/

http://cmer.uoguelph.ca

 <QDebug> - This is Qt’s debug output object. This lets you print debug

messages to the console.

 <QVariant> - This is an abstract class of Qt’s types. Qt uses QVariant

when a function can return a variety of objects. It is up to the user to

know what type of object the functions really return and need to call

QVariant’s conversion functions (ex. toInt, toString) to convert the

QVariant to the expected type.

o Below the Qt include statements you’ll notice a whole bunch of #include

statements starting with “bb/cascades”. These are, of course, for the Cascades

User Interface components. Most of them are straightforward and don’t need

explanations so I won’t explain each of them here, but you can see the comments

in the header file to get a better understanding of them.

o You’ll notice that below the include statements we state that we will be “using

namespace bb::cascades;”. This package contains all of the Cascades classes,

and we state this so we don’t have to type out “bb::cascades” in front of every

component name. “Button” looks much friendlier than “bb::cascades::Button”

after all.

o If you are not familiar with Qt, there are a few important things to note in the

class declaration.

 “class App : public QObject” – This is how we start declaring a class. Its

name is App, and it extends the base QObject class.

 “Q_OBJECT” – This is a very important line. It tells Qt that your class is

a subclass of QObject, which causes Qt to add meta-data to the class that

will allow it to properly implement signals, slots, dynamic properties,

and run-time type information.

 “App()” and “~App()” – “App()” is the class constructor, while

“~App()” is a destructor. A destructor is called at the end of an object’s

lifespan and should be used to release any resources the object is

holding.

 “public:” – This declares the access for the functions and variables that

follow it, like in C++. There is also protected and private.

 “public slots:” – This declares that the functions that follow are to be

treated by Qt as SLOTs. SLOTs are functions that can be bound to

SIGNALs, so that when a SIGNAL is emitted it will call all bound

SLOTs. This allows you to attach “callback” functions to events like

button clicks. SLOTs can also be called as regular functions. You can

also declare “public signals:” but we won’t have any in this lab, as all of

our events come from Cascades components.

 Now that you’ve got a general understanding of the header format, open the “app.cpp”

file

o You’ll notice that in the constructor it just contains a bunch of Containers, a

single Label for the title, 9 Buttons, and a single Page to contain it all.

o There is an initialize() function, were we load the three images we’re going to

use later on.

o There are also function stubs for each of the SLOTs.

 Let’s try running the App to see what it looks like.

o Start up VMware Player and open the BB10 Dev Alpha Simulator and wait for it

to finish loading.

o Click the arrow beside the Build button (hammer image) in the IDE, and make

sure it is set to “Simulator-Debug”

o Click the Build button and wait until it finishes building.

http://cmer.uoguelph.ca

o Click on the Run button. Then click on “BlackBerry C/C++ Application”.

o You should see something like Figure 1.

Figure 1

 You’ll notice that the background is a light black, which is what we set the background

color to for the appContainer.

 That “grid” of buttons below the title is actually 3 horizontal StackLayouts inside of a

vertical StackLayout. This is because Cascades does not currently have a Grid layout of

any kind. We’ll refer this “grid” as the “game board” from now on.

 If you try to click on a Button, you’ll see that it reacts to your click, but nothing happens.

In reality our SLOTs, that were bound to the Buttons with connect(), are being called, but

since they are empty they don’t do anything. Try changing “void App::clickedX0Y0(){}”

to “void App::clickedX0Y0(){ qDebug() << “First button clicked!”; }”. Try running it

again. Now when you click the first button, the Console in the IDE should print out “First

button clicked!”

 Note that each button and their respective click function represents the x and y

coordinates for the corresponding spot on the game board, where X represents horizontal

position, and Y represents vertical position (X0Y0 is top left, and X2Y2 is bottom right).

 Now we can start adding some functionality to the App. First let’s do some initialization.

In the constructor for App you’ll see that we make a call to initialize(). We’re going to

add some variable initialization in this function.

 Note that we are going to be using two class variables for storing some game data: the

spots QList and the remainingSpots QList. These already exist in the header file.

o spots is a list of 9 characters, one for each spot on the 3x3 game board. It is used

to store who is occupying each spot: an ‘X’ means the player is, an ‘O’ means

the computer is, and a ‘-’ means the spot is currently not taken.

o remainingSpots stores the indexes of the remaining spots available on the game

board. It starts off with 9 elements, and shrinks as spots on the game board are

taken. This will be used later on for quickly picking a spot for the computer’s

turn.

http://cmer.uoguelph.ca

 Find the initialize() function. This function will be called once when the application

starts. In this function you’ll just need to add a call to newGame() after loading of the

images. We will add more to this function later on.

 Find the newGame() function stub. It takes no parameters, and returns nothing.

o Inside of it, empty the spots QList (i.e. call its clear() function). We’re going to

append the values into the list, so we want it to be empty.

o Also empty the remainingSpots QList (i.e. call its clear() function). This way, if

there were still indexes left in the list from the last game we can remove them.

o After clearing the lists, create a for-loop to iterate through each of the 9 spots in

the QLists (from 0 to 8).

 Use the loop to append 9 dash (‘-’) characters to the spots QList to

signify that each spot of the game board is available.

 Also use the loop to append the numbers 0 to 8 into the remainingSpots

QList.

o After the loop we need to clear the game board. This involves setting the images

of the buttons back to the blankImg image. Do this in a new function, call it

clearBoard(). It takes no parameters and returns nothing.

 Call setImage(blankImg) on each of the buttons from x0y0 to x2y2.

o Your newGame() function should now look something like the following:

o Your clearBoard() function should now look something like the following:

 Next we’ll handle the button clicks. When one of the Buttons in the game board is

clicked, we want to display the ‘X’ image in that Button, set the corresponding element in

spots to an ‘X’ and remove the index from the remainingSpots list. Since every Button

will do the same thing except that it’ll do it for a different spot, we will make a single

function to call from each of the click SLOTs.

o Create a new function, call it spotSelect(). It takes in one parameter, an integer

index, and does not return anything.

o First check that the element in spots at index is not already taken

 If the element at index in the spots QList is not a ‘-’, then the spot is

already taken.

void App::clearBoard(){
 x0y0->setImage(blankImg);
 x1y0->setImage(blankImg);
 x2y0->setImage(blankImg);
 x0y1->setImage(blankImg);
 x1y1->setImage(blankImg);
 x2y1->setImage(blankImg);
 x0y2->setImage(blankImg);
 x1y2->setImage(blankImg);
 x2y2->setImage(blankImg);
}

void App::newGame(){
 spots.clear();
 remainingSpots.clear();
 for(int i=0; i<=8; i=i+1){
 spots.append('-');
 remainingSpots.append(i);
 }
 clearBoard();
}

http://cmer.uoguelph.ca

 If the spot is already taken, simply return from the function. You can add

a qDebug() statement before the return statement so you can see when

this case occurs.

o Next, we need to set the element at index in the spots QList. Since the user

initiated the click on the spot, we want to set the spot to an ‘X’.

o Now, use a switch statement to set the image of the Button corresponding to the

index parameter to the xImg image. Note that the numbering system for spots on

the game board works as follows:

 X0 X1 X2

Y0 X0Y0 = index 0 X1Y0 = index 1 X2Y0 = index 2

Y1 X0Y1 = index 3 X1Y1 = index 4 X2Y1 = index 5

Y2 X0Y2 = index 6 X1Y2 = index 7 X2Y2 = index 8

o Finally, we need to remove the index from the remainingSpots list.

 Make a new integer variable named toRemove and store the result of

remainingSpots.indexOf(index) in it.

 Call remainingSpots.removeAt(toRemove).

o Your spotSelect() function should look something like the following:

 Now we can set up the click SLOTs to call spotSelect()

o In each of the click SLOT stubs (i.e. clickedX0Y0, and so forth) call

spotSelected() passing it the index corresponding to each respective button (refer

to the above table if you need help remembering which button corresponds to

which index).

 If you’ve tried to run your app so far, you may notice some errors appearing with regards

to images not being found. This is because we haven’t added the images to our project

yet. Copy the images folder included with the startup files into the assets folder of your

project.

void App::spotSelect(int index){
 if(spots[index] != '-'){
 qDebug() << "Spot already taken.";
 return;
 }
 spots[index] = 'X';
 switch(index){
 case(0): x0y0->setImage(xImg); break;
 case(1): x1y0->setImage(xImg); break;
 case(2): x2y0->setImage(xImg); break;
 case(3): x0y1->setImage(xImg); break;
 case(4): x1y1->setImage(xImg); break;
 case(5): x2y1->setImage(xImg); break;
 case(6): x0y2->setImage(xImg); break;
 case(7): x1y2->setImage(xImg); break;
 case(8): x2y2->setImage(xImg); break;
 default: return;
 }
 int toRemove = remainingSpots.indexOf(index);
 remainingSpots.removeAt(toRemove);
}

http://cmer.uoguelph.ca

o You can either find the project folder using the filesystem on your computer, or

you can right-click on the assets folder of your project in the Momentics IDE and

click Paste.

 Run your app again. The image on the buttons should change to ‘X’s when you click on

them.

 You should see something like Figure 2.

Figure 2

 As you can see in Figure 3, you can currently click on more squares than you should be

able to in a regular game of TicTacToe. We’re going to fix this in the next step by letting

the App take spots on the game board.

Figure 3

 Let’s add a second player to the game. We’re going to create a “computer” player. Any

time the user chooses a spot, the computer can choose a spot right after, so we’ll add this

logic in the spotSelect() function after the code that handles the user’s turn.

http://cmer.uoguelph.ca

o Before starting to generate a spot for the computer, first check that there are spots

left in remainingSpots by returning if remainingSpots.size() returns less than 1.

o Create an integer variable for the computer’s spot choice. Set the variable to zero

for now.

o Next do the exact same thing that you did for handling the user’s choice, except

change the ‘X’ to an ‘O’, change xImg to oImg, replace index with the new

variable you created for the computer’s choice, and finally remove the index

from remainingSpots.

 Right now the computer will always choose the first spot. Let’s change this so that it

picks an available spot randomly.

o Make a function called computerGoForRandomSpot() that takes no parameters,

but returns an integer.

o Change the computer’s spot to equal computerGoForRandomSpot() instead of

zero.

o In computerGoForRandomSpot() return remainingSpots[0]

o Your spotSelect() function should now look something like the following:

 Run the app again. You’ll notice that the computer will just try to pick the next available

spot. This isn’t very fun, so next let’s add randomization to its choice.

 To add randomization (note that it will be pseudo-random) to the computer’s choices we

will first need to create and initialize the random number generator. We’re going to use

Qt’s qrand() function, which we can seed using qsrand().

void App::spotSelect(int index){
 if(spots[index] != '-'){
 qDebug() << "Spot already taken.";
 return;
 }

 //Handle user’s choice
 spots[index] = 'X';
 switch(index){
 case(0): x0y0->setImage(xImg); break;
 …
 case(8): x2y2->setImage(xImg); break;
 default: return;
 }
 int toRemove = remainingSpots.indexOf(index);
 remainingSpots.removeAt(toRemove);

 if(remainingSpots.size() < 1){ return; }

 //Generate computer’s choice
 int computerChoice = computerGoForRandomSpot();
 spots[computerChoice] = 'O';
 switch(computerChoice){
 case(0): x0y0->setImage(oImg); break;
 …
 case(8): x2y2->setImage(oImg); break;
 default: return;
 }
 toRemove = remainingSpots.indexOf(computerChoice);
 remainingSpots.removeAt(toRemove);
}

http://cmer.uoguelph.ca

o Go back to your initialize() function.

o Before the call to newGame() add the following lines:

 The first line creates a QTime object named midnight and initializes it to

hour zero, minute zero and second zero.

 The second line calculates the number of milliseconds from midnight to

the current time (essentially giving you an integer representation of the

current time of the day in milliseconds).

 The third line seeds qrand() with the new seed.

 Note: Starting the App at a certain time on one day and starting it at the

same time on another day (or starting the App on two devices at the same

time) may cause the same seed to be generated. This will only happen if

the QTime::currentTime() line for both days (or on both devices) is

executed at the exact same millisecond. In these cases the same sequence

of random numbers will be generated from qrand(). You should add

better randomization to your App if you were using the random numbers

for selecting a contest winner, for security purposes, or for other such

things.

o Go back to your computerGoForRandomSpot() function.

 Replace the function contents with the following:

 The first line generates a random number, and then makes sure it is less

than the size of the remainingSpots list.

 The second line returns the index stored at the random spot in the list.

 Run your app again, and you should notice that the computer picks spots

(pseudo)randomly.

Figure 4

 In the next lab we’ll add checking for win conditions, improve the computer logic, and

add a custom icon and splash screen to our app.

int rand = int(qrand() % remainingSpots.size());
return remainingSpots[rand];

QTime midnight(0, 0, 0);
int seed = midnight.msecsTo(QTime::currentTime());
qsrand(seed);

