

1

http://cmer.uoguelph.ca

Developing Apps for the BlackBerry PlayBook with Adobe AIR

Lab # 1

Getting Started with Flash Builder and ActionScript 3.0

Introduction
The objective of this lab is to give you the basic information required to begin developing

applications for the BlackBerry Playbook using ActionScript 3.0 and the Flash Builder 4.6 IDE.

In this lab, we’ll be dealing with creating, testing, and building your application.

A small self-test is included at the end of this lab to test your understanding of its contents

Software Requirements:

- Flash Builder 4.6 (http://www.adobe.com/products/flash-builder.html)

- Adobe Flex SDK (Included with Flash Builder)

- PlayBook SDK for Adobe Air 2.0 (https://bdsc.webapps.blackberry.com/air/download/sdk/)

-PlayBook SDK must be integrated into Flash Builder. Choose to do so when asked

during its installation

-PlayBook Simulation Environment

-PlayBook Deployment Tools for Mac (included in Lab 2 file)

-Updated Java JRE Enviroment (http://java.com/en/download/index.jsp)

Note: This guide can also be used with Flash Develop (http://www.flashdevelop.org/), which is

an open source alternative to Flash Builder. The code presented here will work with both.

However, interactions with the IDE will differ, and because it is more user friendly – Flash

Builder will be used. If you choose to use Flash Develop, the Flex SDK can be found here:
http://sourceforge.net/adobe/wiki/Projects/

This guide assumes you have set up your

development platform correctly, and are

familiar with the basic functions of your

IDE. It also assumes you have the necessary

tools to build and sign PlayBook

applications. For more information on this,

refer to:

https://bdsc.webapps.blackberry.com/air/

Start a new project
Create a new ActionScript Mobile Project

navigating to:

File > New > ActionScript Mobile Project

1. Specify a project name

2. Select an SDK (recommended to choose

Flex 4.6.0)

3. Select Next to manage your mobile

settings

 Figure 1: Starting a new project

http://www.adobe.com/products/flash-builder.html
https://bdsc.webapps.blackberry.com/air/download/sdk/
http://java.com/en/download/index.jsp
http://sourceforge.net/adobe/wiki/Projects/
https://bdsc.webapps.blackberry.com/air/

2

http://cmer.uoguelph.ca

4. Select the BlackBerry Tablet OS

Platform. (If this option is

unavailable to you, it is because your

PlayBook SDK was not installed

correctly. Reinstall it, and remember

to select “Implement into Flash

Builder”)

5. Deselect Automatically reorient.

This lab will not implement that

feature. In future labs, however, we

will create dynamic graphical assets

that will work with the reorient

property.

6. Select Full Screen. This will allow

the app’s boundaries to exactly match

the screen boundaries.

 Figure 2: Mobile Settings

7. Take note of the permissions. The description below gives you a basic overview of what each

permission allows. Although we will not be

using any permissions for this lab, they are

key to making use of the PlayBook’s

hardware.

8. Select Next to select custom Build Paths.

We will be using a referenced library for

this lab.

Definition from Wikipedia.org:

An Adobe SWC file is a package of

precompiled Flash symbols and

ActionScript code that allows a Flash or

Flex developer to distribute classes and

assets, or to avoid recompiling symbols and

code that will not change. SWC files can be

generated by the Flash authoring tool, and

by Flex. They are sometimes referred to as

class libraries.

 Figure 3: Build Paths

9. Add Ball.swc, included in lab1.zip.

This .swc includes a MovieClip, called Ball, which contains a symbol of a gradient shaded ball of

100px by 100px. It is exported using the linkage class Ball.

3

http://cmer.uoguelph.ca

It is considered good practice to have all your Classes and Libraries start with an uppercase letter,

to differentiate them between packages and variables.

In this window, you can also set the Application ID (or name). Click finished when your ready,

and Flash Builder will automatically generate the necessary xml and descriptor files.

Creating Your First Application
Hello World is boring. So, instead, we’ll be designing balls that move on stage, being affected by

gravity and stage boundaries.

ActionScript 3.0 is an object oriented programing language (OOP). Using OOP languages at first

can be overwhelming, and complicated, but they are a very efficient, modular, powerful, and

clean way to code. We’ll be taking advantage of ActionScript’s OOP capabilities, and be creating

packages and classes.

Look at your package explorer in Flash Builder (to the left of your code editor). You’ll notice that

Flash Builder automatically created a default package with a class that has the same name as your

project. This is your document class (your main function, main object, index, or home – but in

ActionScript 3 it is referred to as your document class). This class will automatically instantiate

when your program starts, so we’ll be using it to instantiate our other classes, as well as call all

our functions.

Not yet though, let’s get started by creating the hierarchy that will be our program. Create a new

package (File > New > Package or Right click on project > New > Package) inside the /src/

folder in your project and name it ballpack.

Now create a new ActionScript Class inside your ballpack package, called BallCode.

Note that it is considered good practice to name your packages will all lowercase, and have the

first letter of your classes a capital. This is to help you differentiate between packages and classes

when working with your libraries.

When you’re done, your project should look something like Figure 4.

Figure 4: File structure

Place the code from BallCode.txt into your BallCode class.

Refer to the comments (in the code) and appendix for explanations on how it works.

BallCode.as Appendix:

Package – tells the compiler what package the class is a part of.

Import – tells the compiler what libraries this particular class requires and will use to run

Public class – this class can be publicly accessed/used/ and instantiated by other classes

4

http://cmer.uoguelph.ca

Private var – variables that can only be accessed/modified by this class, because they were

declared outside of a function and inside the class, there scope is the whole class.

Public function ball code – this is the constructor function. This function is automatically run

when this class is instantiated.

public function updateballVelocities(b:Ball):void – This function accepts a variable of type

Ball() as a parameter, and returns no value

private function – A function that can only be called privately. I.E. Only by this class.

degree to radians – Most ActionScript properties accept radians as values. To make this code

more readable, I’ve decided to use degrees, and simply convert it to radians before I gave the

value to the property.

move() and addBall() are functions that will be used by our document class.

Place the code from documentclass.txt into your document class, or main file.

Refer to the comments (in the code) and appendix for explanations on how it works.

lab1gravityball.as Appendix:

swf header – Very important line. This declares all the major properties of your application.

Done. But does it work? Let’s see.

Test Your Application using the PlayBook Simulator
To run your app in the simulator, right click your project (the main folder with the phone on it)

and select Run As > Configurations

Figure 5: Run As...

Figure 6 shows the settings to run the simulator on your desktop.

Figure 6: Running the desktop simulator

Or if you are using VMPlayer/VMFusion to simulate (recommended), then start up VM and boot

the PlayBook OS. Use the settings in Figure 7.

5

http://cmer.uoguelph.ca

Figure 7: Running the VM Simulator

Congrats. Your application should run. If not, check the compiler’s error console for more

information.

If you’re happy with the way your application runs, then let’s move on to the final part of this

tutorial.

Build Your Application

To export your file into a .bar…

1. File > Export

2. In the Flash Builder folder, select Release Build.

3. Select Next.

4. Choose “BlackBerry Tablet OS” as your target platform.

5. Select a destination folder

6. Choose to Export as:

 Signed packages for each platform

7. Select Next

8. Select Enable Digital Signing

9. If you have yet to configure Flash Builder to automatically sign your apps, please click the

Signing link to configure your author tool, other wise select Finish, and watch as your code is

transformed into a PlayBook executable.

Now that your application has been signed, it can be be deployed to your Playbook and tested on

a real device.

Deploying You Application
Export and sign your application. Refer to the instructions in Lab 1, if you need help.

Power on your PlayBook Device, and turn Development Mode on. To do so:

Touch Settings > Security > Development Mode

Remember your password, and IP Address.

6

http://cmer.uoguelph.ca

Connect your PlayBook Device to your computer, and enter your password to grant access.

Put your exported .bar file, inside the Playbook_Tools folder included in the Lab 2 folder.

I highly recommend you read the included READ ME_INSTRUCTIONS file. It includes

some important information.

Open MacDeployer.app, and follow the on screen instructions.

Test Yourself

Complete the following to test your understanding of the code:

1. Change the swf’s frame rate

2. Create 5 balls

3. Slow your balls down

4. Create a function to remove a ball

5. Change the stage boundary to half the width

