
http://cmer.uoguelph.ca 1

Getting Started with HTML5 using BlackBerry WebWorks

Lab # 1: Using New Options in the Latest Web Technologies

The objective of this lab is to introduce some of the new concepts added in HTML5 by creating a

WebWorks application for the BlackBerry Smartphone. The intent of this application is to

simply show some basic features that are new in HTML5 by building a simple note taking and

to-do list application for BlackBerry 7 devices. In labs 2 and 3, we will experiment with more

advanced functions of recent web technologies by adding more features to this application. In

this lab, we’ll be changing some tags to newer more advanced versions, using local storage and

checking network status.

Before attempting this lab, please be sure to download and install the BlackBerry WebWorks

SDK for Smartphones available at https://bdsc.webapps.blackberry.com/html5/download/sdk.

Make sure you that you have Java Software Development Kit installed and configured on your

computer. Please also install the Ripple Emulator available at:

https://bdsc.webapps.blackberry.com/html5/download/ripple. The Ripple emulator is a mobile

environment emulator that is custom-tailored for mobile HTML5 application development and

testing. You do not need to worry about signing your application as we’ll be testing it on the

emulator. Instructions on how to setup and start using the emulator can be found here:

https://bdsc.webapps.blackberry.com/html5/documentation/ww_getting_started/getting_started_

with_ripple_1866966_11.html. This lab also assumes that you have knowledge of basic HTML,

JavaScript and CSS.

Working with HTML5 Tags

 Open the startup archive Lab1.zip extract it to a folder of your choice, then open

index.html in your favorite HTML editor.

You will notice that some code has already been provided to you. Open it in the Ripple

emulator and see how it looks. There is HTML and CSS files provided that make this

simple interface.

 In the index.html file, you will notice it begins with the code

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

This was necessary to identify the type of file and coding used in the past but HTML5

allows us to simplify it. On older browsers, the browser will still automatically identify

correctly. Change that line simply to

<!DOCTYPE html>

 There is another simplification for tags when adding stylesheets and JavaScript files. No

longer is type= “text/css” and type = “text/javascript” necessary to identify the files. You

can go ahead and remove them from the two statements in the header.

https://bdsc.webapps.blackberry.com/html5/download/sdk
https://bdsc.webapps.blackberry.com/html5/download/ripple
https://bdsc.webapps.blackberry.com/html5/documentation/ww_getting_started/getting_started_with_ripple_1866966_11.html
https://bdsc.webapps.blackberry.com/html5/documentation/ww_getting_started/getting_started_with_ripple_1866966_11.html

http://cmer.uoguelph.ca 2

We added a JavaScript document called script.js to the project which you can see in the

startup files. This is a blank document currently and we will add more to it later. In the

scripts folder, there is also a file called jquery.js, add a reference to this in your

index.html before the importing of the script.js file. JQuery is a JavaScript library that

provides simple functions to make app development much easier without having to re-

write them each time.

 Next we will see on our page that there is already a simple bulleted list created for items

to do. In your browser, you will notice that this is not editable. We would like to change

this. In the tag, add the content editable line which will allow the user to make

changes to the text. This text will be similar in look to how it was previously, but the user

will be able to edit it. This will not be a textbox as in traditional HTML, but normal text.

<ul contenteditable=true>

Going back to Ripple, you will notice that the text can now be changed.

 For a useful app, this text should not go back to default every time we load it. In Ripple,

if you refresh the page, all of your edits will disappear. To change this, we will make use

of the new local storage feature. This is a new and much simpler method than using a

database or cookies. This feature is not supported across all browsers but will work in our

BlackBerry 7 application.

The first step will be to give our unordered list an ID. Let’s call it “items”

Next we will open our script.js file and add a listener for when the user leaves the to-do

box. In order to do this, we will use blur events and JQuery. Add the following function

into your script.js file

$(function() {

 var items = document.getElementById('items');

 $(items).blur(function() {
 localStorage.setItem('itemData',this.innerHTML);

 });

});

Testing now would not show any difference, however the content will be saved. If you

refresh the page, you will still see the defaults. To combat this, we need to check if there

exists previous data when the page loads and if there is, insert that instead. Before the

final closing tags in the above function, we will add a check to see if there is any previous

data and insert it. This will be checked every time the app is loaded.

http://cmer.uoguelph.ca 3

 if(localStorage.getItem('itemData')){
 items.innerHTML = localStorage.getItem('itemData');
 }

Now refreshing your app in Ripple you should see that you have data that you previously

entered into the list available. This is stored locally on the BlackBerry using the HTML5

local storage technique.

 In a later lab we’ll be adding some functionality that will use the phones internet

connection. For now, we’ll only be adding a small notifier that tells the network

connection status. This new addition to HTML5 allows web applications to check and

confirm network status before performing actions. Usually this information does not need

to be displayed, but we will show it as a demonstration.

In the index file, decide where you would like the network status to be shown, it is

recommended that it is below the unordered list. Add in the following code for us to

modify using JavaScript and display the status.

<p></p>

Next we will go to the script.js file and add in some JavaScript to check the network

status. Before the final closing tag, add the following functions that will allow us to add

window events

var addEvent = (function () {
 if (document.addEventListener) {
 return function (el, type, fn) {
 if (el && el.nodeName || el === window) {
 el.addEventListener(type, fn, false);
 } else if (el && el.length) {
 for (var i = 0; i < el.length; i++) {
 addEvent(el[i], type, fn);
 }
 }
 };
 } else {
 return function (el, type, fn) {
 if (el && el.nodeName || el === window) {
 el.attachEvent('on' + type, function () { return fn.call(el,
window.event); });
 } else if (el && el.length) {
 for (var i = 0; i < el.length; i++) {
 addEvent(el[i], type, fn);
 }
 }
 };
 }

})();

http://cmer.uoguelph.ca 4

Now we will move to checking the status of the network by using this code directly

below what we just added

 var statusElem = document.getElementById('netState');

 function online(event) {
 statusElem.className = navigator.onLine ? 'online' : 'offline';

statusElem.innerHTML = navigator.onLine ? 'Network status: Online' : '
Network status: Offline';

 }

 addEvent(window, 'online', online);
 addEvent(window, 'offline', online);

online({ type: 'ready' });

If we test our app in Ripple or a standard browser, we will see the network status shown

as offline or online. Now go back through the function you added and modify the text so

if the network is online, it displays in green font and red for offline. If you are unable to

determine how to change the text color, take a look at this example:

http://html5demos.com/offline, examine the code and see how you can implement it into

your application.

 Next we will add a form at the top of our page to add structured elements to our to-do list.

We will use new validation techniques in this form.

Create a new form element with 3 standard text fields for Name, Email and Website.

Since on mobile devices we have limited screen real-estate, we do not want to waste

space with labels for these form elements. Instead we can use the new placeholder

element inside the input tag to give some example text so the user knows what to enter.

By adding the placeholder= “TEXT HERE” tag to our elements, we will find something

similar to this:

This text disappears when the user goes to enter information. This method allows us to

save quite a bit of space without confusing users. Previous web technologies did allow

this but it was difficult and cumbersome to do.

 Next let’s change the form element for the email box from a general text type to an email

type. Where we had

<input type="text" name="email" id="email" placeholder=" my@email.com ">

Would now become

http://html5demos.com/offline

http://cmer.uoguelph.ca 5

<input type="email" name="email" id="email" placeholder="my@email.com">

This small change makes the box a new email type field adding two important things. On

many browsers, if you incorrectly enter an email using invalid syntax, an error message

will automatically be shown. Note that you will not see this currently on the BlackBerry

browser or in Ripple but there is a second benefit for this change we will see.

On mobile devices, this field will give the OS a hint of what information is required,

changing the virtual keyboard to fit. On a BlackBerry we can see that the keyboard

changes to fit the needs for email, URL and number type fields rather than showing just a

general keyboard. While entering an email address on a physical keyboard, it will also

correctly place the “@” symbol and period in the email address by using the space

button. Try also now changing your website field to a URL type. The URL type also

offers the same validation options.

 Standard Keyboard Keyboard for Email Keyboard for URL

This is the end of Lab 1, in Lab 2 we will make use of the form fields we have created; add

geolocation and many other enhancements.

